

Use the Richter scale, $R = \log_{10} \frac{1}{I_0}$, for measuring the magnitudes of earthquakes.
57) Find the magnitude of an earthquake of intensity I (let $I_0 = 1$).
a) $I = 80,500,000$ R= log_{10} 80,500,000
R= 7.906
b) I=48,275,000 R=log, 48,275,000 R=6.684

Use the following information for determining sound intensity. The level of sound β , in decibels, with an intensity of *I* is given by: $\beta(I) = 10 \log_{10} \frac{I_0}{I_0}$ where I_0 is an intensity of 10^{-16} watts per square centimeter, corresponding roughly to the faintest sound that can be heard by the human ear.

59) $I = 10^{-4}$ watts per cm² (threshold of pain):

$$\mathcal{F}(10^{-4}) = 10 \log_{10} \frac{10^{-4}}{10^{16}}$$
$$= 10 \log_{10} 10^{12}$$
$$= 120 \text{ JB}$$

Assignment: pg. 346 21, 22, 45 - 48 all, 50 - 68 even.